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Politécnica de Catalunya, Campus Nord, Mòdul B4, 08034 Barcelona, Spain
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Abstract. A variant of a simple method for chaos control is applied to achieve control in
random Boolean networks (RBNs). It is shown that a RBN in the chaotic phase can be forced
to behave periodically if a certain quenched fractionγ of the automata is given a fixed state
(the system variables) everyT time-steps. An analytic relationship betweenγ andT is derived
using the size of the stable core as an order parameter.

A simple and paradigmatic example of complex systems has been provided by the random
Boolean networks (RBNs), also called Kauffman nets [1–4, 20]. First introduced by
Kauffman, a set ofN binary elementsS(t) = (S1(t), . . . , SN(t)), with Si(t) ∈ 6 ≡ {0, 1},
(i = 1, . . . , N) is updated by means of the following dynamic equationsSi(t + 1) =
3i [Si1(t), Si2(t), . . . , SiK (t)].

Such dynamical systems share some properties with cellular automata (CA), but here
randomness is introduced at several levels. Each automaton is randomly connected with
exactlyK others which send inputs to it. Here3i is a Boolean function also randomly
chosen from a setFK of all the Boolean functions with connectivityK. An additional
source of randomness is introduced through the random choice of the initial condition
S(0) ≡ {Si(0)}, drawn from the setC(N) of BooleanN -strings. In spite of these random
choices, the RBNs exhibit a critical transition atKc = 2. Two phases are observed: a
frozen one, forK < Kc, and a chaotic phase forK > Kc [3, 4]. Here ‘chaos’ is not the
usual low-dimensional deterministic chaos but a phase where damage spreading takes place
(i.e. propagation of changes caused by transient flips of a single unit).

This critical point was first estimated through numerical simulations [1, 2] and later
analytically obtained by means of the so-called Derrida’s annealed approximation (DAA)
[5, 6, 18, 19]. Later on, Flyvbjerg [7] found analytically an order parameter, the size of the
stable core at time infinity (defined below), for the second-order transition between the two
phases. A simpler damage spreading approximation, equivalent to DAA, was introduced
by Luque and Solé in [8].

Fogelman-Soulíe [14, 15] defines the stable core as a set of variables of constant values
through time and independent of initial conditions. On the other hand, Flyvbjerg [7] defines
the stable core at timet as the variables that in timet have reached stable values (i.e.
remain unaltered in value fort ′ > t and are independent of initial conditions). He defines
s(t) as the relative size of the stable core at timet , i.e. s(t)N is its absolute value and
suggests the asymptotic stable core size, i.e.s(t) when t →∞, as an order parameter for
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the second-order transition frozen chaos in RBNs. He obtains a growth iterated equation
for the stable core (it is clear thats(t) is non-decreasing)

s(t + 1) = P(s(t)) ≡
K∑
i=0

(
K

i

)
s(t)K−i (1− s(t))ipi (1)

wherepi is the probability that the Boolean function is independent of a certain numberi

of inputs (a biologically relevant case are the canalizing functions that depend on a unique
input and are independent of the rest [16]). For the Boolean functions with biasp, i.e.
equal to 1 with probabilityp and equal to 0 with probability (1− p) he finds

pi = p2i + (1− p)2i . (2)

By substituting (2) into (1) and analysing its stability he finds the transition critical curve

K2p(1− p) = 1 (3)

according to [5, 6, 8], but reached by different methods.
In figure 1 we plot the relative asymptotic stable core size (full curve) for iteration of

(1) andK = 3. Here we show that

s(∞) = 1 if p > pc

s(∞) < 1 if p < pc (4)

wherepc is exactly the critical value determined in (3) withK = 3. Thus (4) defines the
ordered and chaotic or disordered phase, respectively.

We will show how to control the chaotic phase in a random Boolean network by means
of periodic pulses in the system variable from the point of view of the stable core. In recent
years, chaos control [9] has been widely used in the analysis of many dynamical systems
and biological implications have been suggested [10]. This theory has been successfully
applied to different real systems [9]. Recent developments in molecular genetics allow us to
modify the activity of single genes and in so doing open the door for control mechanisms.
We will use a variant of the G̈uémez and Matı́as (GM) method [11]. This simple way of
controlling chaos has been successfully applied ton-dimensional maps, to discrete neural
networks [12] and in the control of spatiotemporal chaos in coupled map lattice models
[13]. Our aim in this paper is to retrieve former results [17] on chaos control in RBNs
using the growth equation (1) for the stable core and to analyse the outcome from this
point of view. We wish to ‘push’ the system from the chaotic to the ordered phase. In
order to reach this point, we will help the stable core to grow sufficiently to reach the
whole system. A simple method can be used: we will periodically freeze (with periodT ) a
fraction γ within the whole set of variables [17]. The fractionγ will be randomly chosen,
but, once determined, it will remain fixed (quenched). Similarly with the values established
for the fractionγ , these will be randomly chosen and maintained afterwards (quenched). In
figure 2 we illustrate the application of this method for the particular case of a RBN with
K = 3 andp = 0.5. The plot shows the magnetization or activity of the network in time,
defined asM(t) = (1/N)

∑
Si(t), whereN is the total number of automata (N = 1000

in this case). The system appears to be chaotic fort = 0–100, when the pulse-control is
applied, consisting of a frozen fractionγ = 0.6 of the totalN everyT = 2 time-steps. For
t = 100–200 the control pushes the system to become ordered. Fort = 200 the control
is removed and the system becomes chaotic again. We can define the magnetization of an
automata as the temporal average of its states [19]. In the ordered regime, the histogram of
the observed magnetizations over the entire network is a series of discrete peaks (see top
middle figure). On the other hand, in the chaotic regime, this histogram is continuous (see
top left and right figures).



Chaos control in random Boolean networks 1535

Figure 1. (a) Critical lines (forK = 3) obtained from iterating equation (5), here a fixed period
T is used and different quenched fractionsγ are applied; (b) same as before, but nowγ = 0.5
is fixed and different periods are applied (see text).

External controls force us to rewrite equation (1), developed for an autonomous system.
It is now a system that receives a perturbation of sizeγ eachT time-steps

s(t + i) = P(s(t)) i = 1, 2, . . . , T − 1 (5a)

s(t + T ) = γ + (1− γ )P (s(t + T − 1)). (5b)

Equation (5b) is the unique novelty with respect to (1). Here we observe that theγ

percentage, artificially frozen, helps the stable core to grow, and how, over the remaining
fraction (1− γ ), the same mechanism operates. Again, for the system,s∗ = 1 is a fixed
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Figure 2. Control of a chaotic RBN. Magnetization or activity in time of a system with
N = 1000 automata, connectivity〈k〉 = 3 and biasp = 0.5 (thus in the chaotic phase) is
displayed. The control has been applied att = 100 with γ = 0.6 and periodT = 2. The
network reaches the stable state in a few time-steps, until the control is removed att = 200.

point and we can analyse its stability through the inequality

∂s(t + T )
∂s(t)

∣∣∣∣
s∗
< 1. (6)

By using the chain rule, we obtain as a critical condition for stability

2Kp(1− p)(1− γ )1/T = 1 (7)

which is equal to previously obtained results [17]. Our results are summarized forK = 3
in figure 1(a) and (b). In both figures the critical lines have been obtained through iteration
of the dynamical system (5). In figure 1(a) we show the order parameter for a fixedT

and differentγ -values. At a given (large enough)γ , all the elements belong to the stable
core. In figure 1(b), for a fixedγ we change the periodT . For T = 1 andγ = 0.5,
half of the units are always frozen and the stable core grows since the whole net becomes
frozen. We see that forT = 2 andT = 3 a strong reduction of the stable core is obtained.
Further increases inT lead to an asymptotic approach of the order parameter towards
s(∞) = γ = 0.5 for p = 0.5 and to the critical pointpc = 0.79 as expected from the limit
T →∞ of equation (7).

To sum up, the stable core approach to RBNs enables us to describe in a quantitative
fashion the conditions for controlling chaotic dynamics (in the sense of a RBN) under
periodic quenched network perturbations. Moreover, an exact relation between the network
parameters and the control parameters can be derived with remarkable similarities using
continuous dynamical systems [17].
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